# Fraction Calculator

Please enter the numerator and denominator of fractions, select operation and click calculate button.

## Adding Fractions

Select + operator and press calculate to **add fractions**. Math formula for *adding fractions* is:

$\frac{1}{3} + \frac{2}{5} = \frac{1\times5 + 3\times2}{3\times5} = \frac{5+6}{15} = \frac{11}{15}$

## Subtracting Fractions

Select the minus sign (+) operator and press calculate to **subtract fractions**. Math formula for *subtracting fractions* is:

$\frac{2}{3} - \frac{1}{5} = \frac{2\times5 - 3\times1}{3\times5} = \frac{10-3}{15} = \frac{7}{15}$

## Multiplying Fractions

Select the multiply sign (*) operator and press calculate to **multiply fractions**. Math formula for *multiplying fractions* is:

$\frac{1}{3} \times \frac{2}{5} = \frac{1\times2}{3\times5} = \frac{2}{15}$

## Dividing Fractions

Select the division sign (/) operator and press calculate to **divide fractions**. Math formula for *dividing fractions* is:

$\frac{1}{3} ÷ \frac{2}{5} = \frac{1\times5}{3\times2} = \frac{5}{6}$

### About Fraction Calculator

*Here Is The Place Where You Can Get Some Info And Qualified Help About Fractions.*

We learn basic things about **fractions** in elementary school,
and in our early school years our teachers help us understand how to simplify,
*add, subtract, or multiply fractions*,
followed by even more complicated operations with those (like converting fractions and so on).
In our daily life, we also deal with fractions quite often: i.e.
when we cook or when we try to **calculate** a price per one unit, etc.
Certainly, construction engineers or architects work with fractions very closely in their projects.
**Fractions** are virtually everywhere, and it is very important for every one of us to know
how to deal with those effectively.

Basically, *fraction* reflects a ratio or a number, indicating a part of a whole.
A fraction is an abstract concept used to indicate amount, length, quantity,
etc. not in whole numbers. Below, you can see some easy examples of common fractions:

2/3 5/6 3/10 2/8

Therefore, each fraction has a numerator,
located on the top and representing the number of equal parts, and a denominator,
located below and representing the number of parts which constitute the whole.
Both denominator and numerator are whole numbers.
The **fractions** with the numerator smaller than the denominator are called simple or proper.
The **fractions** with the numerator equal or greater than the denominator are called improper.

Though *fractions* are not considered to be too complicated concept in modern algebra,
some people may find it difficult to deal with fractions,
even if we are talking about doing quite simple operations.
This website can be of a great help for students, their parents,
or those who are in need to solve various math problems involving operations with fractions.
One of the main advantages of using this website is the opportunity to learn plenty of
information about operations with fractions,
so shortly you will be able to perform such operations and solve the problems on your own.